Psychometric functions of uncertain template matching observers
نویسنده
چکیده
This theoretical note describes a simple equation that closely approximates the psychometric functions of template-matching observers with arbitrary levels of position and orientation uncertainty. We show that the approximation is accurate for detection of targets in white noise, 1/f noise, and natural backgrounds. In its simplest form, this equation, which we call the uncertain normal integral (UNI) function, has two parameters: one that varies only with the level of uncertainty and one that varies only with the other properties of the stimuli. The UNI function is useful for understanding and generating predictions of uncertain template matching (UTM) observers. For example, we use the UNI function to derive a closed-form expression for the detectability (d') of UTM observers in 1/f noise, as a function of target amplitude, background contrast, and position uncertainty. As a descriptive function, the UNI function is just as flexible and simple as other common descriptive functions, such as the Weibull function, and it avoids some of their undesirable properties. In addition, the estimated parameters have a clear interpretation within the family of UTM observers. Thus, the UNI function may be the better default descriptive formula for psychometric functions in detection and discrimination tasks.
منابع مشابه
Analysis of Rayleigh match data with psychometric functions.
Color matches have been used for a variety of purposes, yet the psychometric properties of color-matching data have not been thoroughly investigated. A method is given for generating psychometric functions for the two ends of the color-matching range by use of a perceptual dimension for stimulus magnitude based on ratios of cone quantal catches. The analysis was applied to Rayleigh match data g...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملON THE MATCHING NUMBER OF AN UNCERTAIN GRAPH
Uncertain graphs are employed to describe graph models with indeterministicinformation that produced by human beings. This paper aims to study themaximum matching problem in uncertain graphs.The number of edges of a maximum matching in a graph is called matching numberof the graph. Due to the existence of uncertain edges, the matching number of an uncertain graph is essentially an uncertain var...
متن کاملIdeal Observers of Visual Object Recognition
Converging evidence has shown that human object recognition depends on the observers' familiarity with objects' appearance. The more similar the objects are, the stronger this dependence will be, and the more important two-dimensional (2D) image information will be to discriminate these objects from one another. The degree to which 3D structural information is used, however, still remains an ar...
متن کاملUsing Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain Systems
Using Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain SystemsNaser Kazemzadeh, Saeed BarghandanAbstractIn the present paper, a practical designing method has been proposed for a novel class of NDOs based on TD. Such NDOs can nearly estimate all uncertain disturbances (specifically disturbances without prediction information). Regarding the outstanding perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018